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Abstract: We interpret economic MPC as a scheme that trades off economic performance and
stability. We use this notion to design an economic MPC controller that exploits the inherent
robustness of a stable auxiliary MPC controller to enhance economic performance. Specifically,
we incorporate a flexible stabilizing constraint to the economic MPC formulation that preserves
stability of the auxiliary controller. We use multiobjective optimization concepts to argue that
the dual variable of the stabilizing constraint can be interpreted as a price of stability and
we establish an equivalence between the proposed controller and regularized economic MPC
controllers. We demonstrate that nontrivial gains in economic performance can be achieved
without compromising stability.
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1. BASIC NOTATION AND SETTING

Consider a dynamic system of the form

xk+1 = f(xk, uk) (1)

where xk ∈ <nx , uk ∈ <nu , and f : <nx × <nu → <nx is
the system mapping. We assume that the system has an
equilibrium point (xss,uss) satisfying

xss = f(xss, uss). (2)

We use the notation {xk, uk}t+Tt to describe a trajectory
xk, k = t, ..., t + T and uk, k = t, ..., t + T − 1. We
say that a trajectory {xk, uk}t+Tt is feasible if it satisfies
xt+T = xss and xk ∈ X , uk ∈ U . The sets X ⊆ <nx

and U ⊆ <nu are assumed to be compact and contain the
equilibrium point. If a trajectory {xk, uk}t+Tt is computed

at time τ we denote this as {xk|τ , uk|τ}t+Tt and we define
the compact notation xt|t = xt, ut|t = ut and the vector
uT := (u0, ..., uT−1).

We use the notation of Diehl et al. (2011) to define the
admissible set in T + 1 steps as the joint set of initial
states x0 and control trajectories uT giving rise to a set of
feasible system trajectories. Formally,

WT = {(x0,uT ) | xk+1 = f(xk, uk), xk ∈ X , uk ∈ U ,
for k = 0, ..., T − 1, and xT = xss} . (3)

We define the set of admissible states as

ZT := {x0 | ∃uT s.t. (x0,uT ) ∈ WT } . (4)

Consider now the following tracking and economic value
functions, respectively, evaluated along a feasible trajec-
tory {xk|t, uk|t}t+Tt computed at time t,
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V trt :=

t+T−1∑
k=t

Ltr(xk|t − xss, uk|t − uss) (5a)

V ect :=

t+T−1∑
k=t

Lec(xk|t, uk|t). (5b)

We assume that the stage cost Ltr : <nx × <nu → < is a
mapping satisfying Ltr(x− xss, u− uss) = 0 if and only if
x = xss and u = uss hold and it is positive otherwise. In
other words, the tracking stage cost is a positive definite
function. For simplicity, we drop the dependence on xss
and uss from the notation and use the compact form
Ltr(x, u). Positive definiteness implies that the tracking
stage cost is bounded below and we assume further that
it is bounded above. The economic stage cost is given by
Lec : <nx × <nu → <, and we assume this to be bounded
below and above.

Consider now that at time instant t + 1, we have a
trajectory {x̄k|t+1, ūk|t+1}t+1+T

t+1 with value function

V̄ trt+1 :=

t+T∑
k=t+1

Ltr(x̄k|t+1, ūk|t+1). (6)

We assume that {x̄k|t+1, ūk|t+1}t+1+T
t+1 is the solution of

the tracking MPC problem (MPC-T),

min
zk,vk

T−1∑
k=0

Ltr(zk, vk) (7a)

s.t. zk+1 = f(zk, vk), k = 0, ..., T − 1 (7b)

zk ∈ X , vk ∈ U , k = 0, ..., T − 1 (7c)

zT = xss (7d)

z0 = xt+1, (7e)

The trajectory {x̄k|t+1, ūk|t+1}t+1+T
t+1 is optimal for MPC-

T and thus feasible. As discussed by Mayne et al. (2000)
it follows that:



V̄ trt+1 − V trt ≤ −Ltr(xt, ut). (8)

Condition (8) is sufficient for stability because Ltr(·, ·) is
a positive definite function and thus the tracking value
function qualifies as a Lyapunov function.

It is well known that stability cannot be guaranteed when
the stage cost Ltr(·, ·) is replaced by an arbitrary economic
stage cost Lec(·, ·). The reason is that the economic stage
cost might not be a positive definite function and thus the
economic value function does not qualify as a Lyapunov
function. Strategies to avoid this issue include the addition
of regularization terms guaranteeing that the regularized
economic value function becomes a Lyapunov function, as
is done by Huang et al. (2011). Alternatively, one might
need to rely on system-specific properties (e.g., strong
duality and dissipativity) to guarantee stability. These
approaches are discussed by Diehl et al. (2011) and Angeli
et al. (2012). In this work, we construct an economic MPC
controller (MPC-E) that exploits the inherent robustness
properties of MPC-T to enhance economic performance.

2. MPC-E CONTROLLER

Because {x̄k|t+1, ūk|t+1}t+1+T
t+1 is optimal for MPC-T it

gives the best progress in terms of the tracking value func-
tion and the structure of MPC-T automatically guarantees
stability. A key observation that we make in this work is
that stability can still be guaranteed for any feasible but
suboptimal trajectory (with respect to MPC-T) that we

denote as {xk|t+1, uk|t+1}t+1+T
t+1 and that satisfies,

V trt+1 ≤ V̄ trt+1 + σ(V trt − V̄ trt+1), (9)

for any scalar σ ∈ [0, 1). Here,

V trt+1 :=

t+T∑
k=t+1

Ltr(xk|t+1, uk|t+1). (10)

To see that stability is implied by (9), we first note that
this condition is equivalent to

V trt+1 − V trt ≤ (1− σ)(V̄ trt+1 − V trt ). (11)

This follows by adding −V trt on both sides of (9). By using
the lower bound (8) we have that (9) implies that

V trt+1 − V trt ≤ −(1− σ)Ltr(xt, ut). (12)

This condition is sufficient for stability because the func-
tion (1 − σ)Ltr(·, ·) is positive definite for σ ∈ [0, 1). We
thus refer to condition (9) as the stabilizing constraint.
We emphasize that (9) implies (12) but not the other way
around.

A suboptimal trajectory {xk|t+1, uk|t+1}t+1+T
t+1 (with re-

spect to MPC-T) satisfying (9) can be obtained by solving
the economic MPC problem (MPC-E),

min
zk,vk

T−1∑
k=0

Lec(zk, vk) (13a)

s.t. zk+1 = f(zk, vk), k = 0, ..., T − 1 (13b)

zk ∈ X , vk ∈ U , k = 0, ..., T − 1 (13c)

z0 = xt+1 (13d)

zT = xss (13e)
T−1∑
k=0

Ltr(zk, vk) ≤ εt+1(σ), (13f)

where

εt+1(σ) := V̄ trt+1 + σ(V trt − V̄ trt+1) (14)

is a parameter (function of parameter σ). From the solu-
tion of MPC-E we set

V trt+1 =

T−1∑
k=0

Ltr(zk, vk)

=

t+T∑
k=t+1

Ltr(xk|t+1, uk|t+1). (15)

Consequently, (13f) is the stabilizing constraint (9). We
now formally define the MPC-E controller.

MPC-E Controller

(0) Given x0 ∈ X and σ ∈ [0, 1), set t ← 0 and
ε0(σ)← +∞.

(1) Solve MPC-E for state xt and εt(σ), evaluate V trt , and
set ut ← v0.

(2) Implement ut, and let system evolve to
xt+1 = f(xt, ut).

(3) Solve MPC-T for state xt+1, and evaluate V̄ trt+1.

(4) Set εt+1(σ)← V̄ trt+1 + σ(V trt − V̄ trt+1).
(5) Set t← t+ 1 and RETURN to Step 1.

We define the MPC-E control law resulting from the above
scheme as h(xt, σ).

Inherent Robustness: The stabilizing constraint (9) is
designed to exploit the inherent robustness of MPC-T to
optimize economic performance. Discussions on inherent
robustness are presented by Pannocchia et al. (2011) and
Santos and Biegler (1999). If a suboptimal trajectory
(with respect to MPC-T) with tracking value V trt+1 is used

instead of the optimal trajectory with tracking value V̄ trt+1,
we have that

V trt+1 − V trt = V̄ trt+1 − V trt + (V trt+1 − V̄ trt+1)

≤ −Ltr(xt, ut) + (V trt+1 − V̄ trt+1). (16)

Here, we used the lower bound (8) and (V trt+1 − V̄ trt+1) is
the suboptimality error with respect to MPC-T. Conse-
quently, we can improve economic performance and main-
tain stability as long as the suboptimality error satisfies
the condition

(V trt+1 − V̄ trt+1) ≤ αLtr(xt, ut) (17)

with α < 1. Note also that the larger Ltr(xt, ut) is, the
more flexibility (inherent robustness) we have to improve
economic performance. One would be tempted to replace
the stabilizing constraint (9) with the suboptimality error
condition (17) or directly impose the condition,

V trt+1 − V trt ≤ −(1 + β)Ltr(xt, ut), (18)

for some β > 0, as is proposed by Maree and Imsland
(2014) (see Assumption 3 in their work). Establishing
lower bounds for α and upper bounds for β under which
(17) and (18) are guaranteed to hold, respectively, is com-
plicated and might require trial and error. In particular,
Maree and Imsland (2014) do not propose a procedure
to determine an upper bound for β. The reason behind
this complication is that both conditions (17) and (18)
are derived by using the lower bound (8). The sufficient
stability condition (9), on the other hand, can hold only
for σ ∈ [0, 1). This will be shown in the next section. These



observations also imply that there is more flexibility than
the one provided by the stage cost Ltr(xt, ut).

Feasibility and Convexity: In the following, we make
the blanket assumption that MPC-T is feasible for any
xt ∈ ZT . Moreover, we assume that any solution of MPC-
T and MPC-E satisfies a Slater condition. We first focus
on the special case in which the system mapping f(·, ·) is
linear, the stage functions Ltr(·, ·) and Lec(·, ·) are convex,
and the sets X and U are convex. Convexity and a Slater
condition guarantee that MPC-T and MPC-E have unique
primal and dual solutions (strong duality holds). These
properties will simplify the derivation and explanation
of several properties of MPC-E. In Section 4 we present
safeguards that enable us to generalize these results to
nonconvex settings.

3. STABILITY AND PROPERTIES OF MPC-E

In the following discussion, we use the compact represen-
tation of MPC-E (13),

min V ect+1 (19a)

s.t. (13b)− (13d) (19b)

V trt+1 ≤ εt+1(σ). (λt+1) (19c)

Here, λt+1 is the Lagrange multiplier (dual variable) of the
stabilizing constraint (19c). For a fixed σ, we denote the
tracking and economic value functions resulting from the
solution of (19) as V trt+1(σ) and V ect+1(σ), respectively. We
define the control action ut+1(σ) and multiplier λt+1(σ)
as functions of the parameter σ.

The MPC-E problem has the following properties.

Lemma 1. For fixed xt+1, MPC-E is feasible for all σ ∈
[0, 1), and V ect+1(σ) is a nonincreasing function of σ ∈ [0, 1).

Proof: From feasibility of MPC-T we have that V̄ trt+1 exists
and is finite. MPC-T and MPC-E have the same constraint
set (except for (13f)) but MPC-E must be feasible with
respect to (13f) for σ = 0. Moreover, from the structure
of (13f), the lower bound (8), and the positive definiteness
of Ltr(·, ·) we have that σ(V trt − V̄ trt+1) ≥ σLtr(xt, ut) ≥ 0
holds for all σ ∈ (0, 1). Consequently, the term σ(V trt+1 −
V̄ trt+1) is a positive relaxation of the stabilizing constraint
(13f), and thus the feasible region of MPC-E for σ = 0 is
contained in the feasible region defined for σ ∈ (0, 1). We
thus have feasibility of MPC-E for all σ ∈ [0, 1).

We can establish the second result as follows. Pick some
parameter σ1 ∈ (0, 1). By construction we have that
εt+1(σ1) > 0. Define the functions f0 := V ect+1(σ1) and
f1 := V trt+1(σ1) − εt+1(σ1) and construct the optimization
problem

min f0 s.t. f1 + κ ≤ 0 (λ),

which is an analog of (19) with fixed parameter κ = 0.
Denote the function values at the solution as f0(κ) and
f1(κ) and the multiplier as λ(κ). By construction we have
that λ(κ) ≥ 0. Under convexity of MPC-E we have from
Theorem 6.1. by Rockafellar (1993) that

f0(κ) ≥ f0(0) + λ(0)κ,

holds for any κ. Now pick κ satisfying 0 < κ < εt+1(σ1).
This is equivalent to picking some σ2 < σ1 because

εt+1(σ2) < εt+1(σ1) holds for σ2 < σ1. Because λ(0) ≥ 0
and κ > 0, we have that f0(κ) ≥ f0(0). This implies that
V ect+1(σ2) ≥ V ect+1(σ1) for σ2 < σ1. The result follows. 2

Stability Price: By construction of MPC-E, we have
that λt+1(σ) ≥ 0; and from duality we have that

λt+1(σ) =

−
∂V ect+1(σ)

∂εt+1(σ)
IF V trt+1 = εt+1(σ)

0 IF V trt+1 < εt+1(σ).
(20)

Consequently, for fixed σ (and thus fixed εt+1(σ)), we
have that the value functions are conflicting if and only if
λt+1(σ) > 0. In other words, as we increase σ we have that
V ect+1(σ) decreases, as stated in Lemma 1. We can thus see
that MPC-E can be interpreted as a multiobjective (MO)
optimization problem that seeks a trade off economic per-
formance and rate of decay of the tracking function (and
thus convergence to the equilibrium point). In our setting,
the trade-off is determined by the parameter σ, which
relaxes the stabilizing constraint. Moreover, the dual vari-
able λ(σ) of the stabilizing constraint can be interpreted
as a stability price. In other words, the stability price is
a measure of the resistance imposed by the stabilizing
constraint on economic performance. If the objectives are
not conflicting (possible in some applications) we have that
λt+1(σ) = 0 and thus the stabilizing constraint becomes
irrelevant. In such a case one can minimize the economic
value function freely without worrying about stability.

We can formalize the MO interpretation by defining the
MPC-MO problem

min {V ect+1, V
tr
t+1} (21a)

s.t. (13b)− (13d).

The set of solutions of the MPC-MO is comprised of weak
Pareto solutions and Pareto solutions which we now define.

Definition 1. (Weak Pareto Optimality) A trajectory

{xk|t+1, uk|t+1}t+1+T
t+1 with corresponding value functions

V trt+1, V
ec
t+1 is weak Pareto optimal for MPC-MO if there

does not exist an alternative trajectory with value func-
tions V̂ trt+1, V̂

ec
t+1 satisfying V̂ trt+1 < V trt+1 and V̂ ect+1 < V ect+1.

Definition 2. (Pareto Optimality) A trajectory

{xk|t+1, uk|t+1}t+1+T
t+1 with value functions V trt+1, V

ec
t+1 is

Pareto optimal for MPC-MO if there does not exist an
alternative trajectory with value functions V̂ trt+1, V̂

ec
t+1 sat-

isfying V̂ trt+1 ≤ V trt+1 and V̂ ect+1 < V ect+1 or V̂ ect+1 ≤ V ect+1 and

V̂ trt+1 < V trt+1.

In other words, weak Pareto solutions can be strictly
improved in one objective while the other one remains
constant (e.g., points along a vertical or horizontal line)
while Pareto optimal solutions cannot be improved strictly
in both objectives (e.g., points along a diagonal). Spanning
the range σ ∈ [0, 1) defines the so-called Pareto front and
this procedure corresponds to the so-called ε-constrained
method reviewed by Miettinen (1999).

Proposition 1. The trajectory {xk|t+1, uk|t+1}t+1+T
t+1 ob-

tained from MPC-E is a weak Pareto optimal for MPC-MO
for any σ ∈ [0, 1).



Proof: Assume that the trajectory {xk|t+1, uk|t+1}t+1+T
t+1

with corresponding value functions V trt+1, V
ec
t+1 solves MPC-

E but it is not weakly Pareto optimal. Then, there exists
an alternative trajectory with tracking and economic value
functions V̂ trt+1, V̂

ec
t+1 satisfying V̂ trt+1 < V trt+1 and V̂ ect+1 <

V ect+1. This implies that V̂ trt+1 < V trt+1 ≤ εt+1(σ) and thus
the alternative trajectory is feasible for MPC-E. However,
because V̂ ect+1 < V ect+1 and V ect+1 is optimal for MPC-E we
have a contradiction. 2

A solution trajectory {xk|t+1, uk|t+1}t+1+T
t+1 obtained from

MPC-E can only be guaranteed to be weak Pareto optimal.
One can verify, however, if this solution is also Pareto
optimal. Consider the alternative problems

min V ect+1 (22a)

s.t. (13b)− (13d)

V trt+1 ≤ V̂ trt+1 (22b)

and,

min V trt+1 (23a)

s.t. (13b)− (13d)

V ect+1 ≤ V̂ ect+1. (23b)

Proposition 2. A trajectory {xk|t+1, uk|t+1}t+1+T
t+1 is Pareto

optimal for MPC-MO if and only if it is the solution of
the alternative problems (22) and (23) with V̂ trt+1, V̂

ec
t+1

evaluated at {xk|t+1, uk|t+1}t+1+T
t+1 .

Proof: See Theorem 3.2.2 by Miettinen (1999). 2

Connection with Regularized Economic MPC:
When strong duality holds (in our setting this is true
under convexity), one can relate the solution of the MPC-E
problem (19) to that of the weighted problem

min (1− ωt+1)V ect+1 + ωt+1V
tr
t+1 (24)

s.t. (13b)− (13d),

with weight parameter ωt+1 ∈ [0, 1].

Proposition 3. The trajectory {xk|t+1, uk|t+1}t+1+T
t+1 ob-

tained from MPC-E (19) with associated multiplier
λt+1(σ) is a solution trajectory of the weighted problem

(24) with ωt+1 := λt+1(σ)
1+λt+1(σ) and ωt+1 ∈ [0, 1].

Proof: If strong duality holds, the solution of MPC-E is
the solution of

min V ect+1 + λt+1(σ)V trt+1 (25)

s.t. (13b)− (13d)

for fixed λt+1(σ). Rescaling the objective function of (25)
by 1

1+λt+1(σ) does not change the solution trajectory. The

result follows from the definition of ωt+1. 2

We thus have that the incorporation of the stabilizing
constraint (13f) can be interpreted as the addition of a
tracking regularization term, in the spirit of the work of
Huang et al. (2011), Subramanian et al. (2014), and Maree
and Imsland (2014). Weighted regularization is in general
cumbersome because the weight needs to be adjusted
at each time t (if at all updated). Maree and Imsland
(2014) do this using an automatic weighting procedure

that selects the maximum weight that preserves stability
at each time t. Using the stabilizing constraint proposed
in this work eliminates the need for such a procedure.

Note that the weight obtained from MPC-E is an implicit
function of σ and thus we can express it as ωt+1(σ). We
also note also that if the objectives are not conflicting we
have that λt+1(σ) = 0 implies ωt+1(σ) = 0.

Theorem 1. The equilibrium point xss under the control
law h(xt, σ) is an asymptotically stable equilibrium with
region of attraction ZT for any σ ∈ [0, 1).

Proof: From feasibility of MPC-T and using Lemma 1 we
have feasibility of MPC-E. The stabilizing constraint (13f)

evaluated at {xk|t+1, uk|t+1}t+1+T
t+1 guarantees that V trt+1−

V trt ≤ −(1−σ)Ltr(xt, ut) for all t. Because Ltr(xt, ut) is a
positive definite function and is bounded from above, we
have that V trt is a Lyapunov function. 2

Corollary 1. limt→∞ εt(σ) = 0 and limt→∞ V ect (σ) = T ·
Lec(xss, uss) for all σ ∈ [0, 1).

Proof: From stability we have that limt→∞ V trt = 0, and
from (8) we have that limt→∞ V̄ trt = 0 and limt→∞ εt(σ) =
0. From (13f) and the fact that Ltr(·, ·) is a positive definite
function we have that the only feasible solution of MPC-E
in the limit is zk = xss, vk = uss. 2

Instability: From (12) we can see that σ = 1 implies that
V trt+1(1) ≤ V trt and, if tracking and economic objectives are
conflicting (e.g., λt+1(1) > 0), we have that V trt+1(1) = V trt .
Consequently, the tracking value function is not strictly
decreasing, and stability cannot be guaranteed.

Connection with other MO controllers: The MPC-
E controller differs from recent multiobjective MPC con-
trollers proposed in the literature. In the multiobjective
controllers presented by Vito De and Scattolini (2007) and
Bemporad and Muñoz de la Peña (2009) all the value func-
tions are required to be Lyapunov functions. In our setting
we only the tracking value function to be a Lyapunov
function. In the utopia-tracking controller presented by
Zavala and Flores-Tlacuahuac (2012), the authors define
multiple value functions Φj(·) with j = 1, ..., NΦ with ideal
values Φ̄j obtained from the solution of

min
zk,vk

Φj({zk, vk}T0 ) (26a)

s.t. zk+1 = f(zk, vk), k = 0, ..., T − 1 (26b)

zk ∈ X , vk ∈ U , k = 0, ..., T − 1 (26c)

z0 = xt+1 (26d)

zT = xss, (26e)

for j = 1, ..., NΦ. The ideal values Φ̄j define the so-called
utopia point. The authors then design an MPC controller
that minimizes the utopia-tracking function,NΦ∑

j=1

∣∣Φj({zk, vk}T0 )− Φ̄j
∣∣p1/p

, (27)

subject to the constraints (26b)-(26e). The utopia-tracking
function (27) is augmented with a Lagrangian penalization
term to derive a Lyapunov function, as proposed by Diehl
et al. (2011). The utopia-tracking controller permits the
handling of many objective functions but relies on strong



duality to guarantee stability. The MPC-E controller pro-
posed in this work can also be used to handle many objec-
tives. This can be done replacing the objective function in
(13) with (27) and by defining the economic value function

V ect+1 :=

NΦ∑
j=1

|Φj({xk|t+1, uk|t+1}t+1+T
t+1 )− Φ̄j |p

1/p

,

(28)

where the ideal values Φ̄j are computed at each time step.
Stability of this MPC-E controller is enforced using the
stabilizing constraint (13f). In Section 4 we show that
strong duality is not needed for this MPC-E controller,
which provides an advantage over the utopia-tracking
controller of Zavala and Flores-Tlacuahuac (2012).

Connection with Lyapunov-Based Controllers: MPC-
E is related to Lyapunov-based MPC controllers, as the
one proposed by Heidarinejad et al. (2012), but differs in
how feasibility in ensured. In Lyapunov-based controllers
the descent of a Lyapunov function is imposed directly
in the controller formulation and feasibility with respect
to this constraint and state constraints is enforced by
designing the level set of the Lyapunov function. The
stabilizing constraint (9) of MPC-E also implies descent of
the Lyapunov function but feasibility is enforced by inher-
iting feasibility of MPC-T. The stabilizing constraint (9) of
MPC-E can be used to add flexibility to Lyapunov-based
controllers. In particular, the descent condition in the
Lyapunov-based controller of Heidarinejad et al. (2012)
corresponds to choosing σ = 0 for the stability constraint
(11) and thus can limit economic performance. We note,
however, that the controller proposed by Heidarinejad
et al. (2012) does not require descent of the Lyapunov
function at each time instant, while MPC-E does.

4. CONSIDERATIONS FOR NONCONVEX CASE

Assume now that the system mapping f(·, ·), the stage
functions Ltr(·, ·), Lec(·, ·), and the sets X and U are
allowed to be nonconvex. Nonconvexity gives rise to several
issues that need to be resolved. First note that it is possible
that no global solution might be available for the MPC-T
and MPC-E. This issue does not prevent us from finding
a feasible (albeit local) solution for MPC-T. This thus
implies that MPC-E is at least feasible for σ = 0 and this
guarantees stability. One cannot guarantee, however, that
MPC-E is feasible for all σ ∈ [0, 1). Second, we cannot
guarantee that V ect+1(σ) is a decreasing function of σ ∈
[0, 1). This issue is related to the presence of discontinuities
and nonconvex segments in the Pareto front. It is also well-
known that, in the presence of nonconvexity, the weighted
formulation (24) might not identify Pareto optimal points
for certain values of the weight ω (see pp. 79-80 in the
work of Miettinen (1999)).

We provide strategies to deal with nonconvexities in our
control setting. First note that continuity of the Pareto
front (with respect to parameter σ and thus εt+1(σ)) can
be guaranteed in a nonempty neighborhood of σ = 0
if MPC-E satisfies the so-called sufficient second-order
conditions (SSOC). SSOC implies that the the solution
is uniquely defined and that the solution is Lipschitz
continuous in σ in a neighborhood of σ = 0. For a review

of these concepts see Zavala (2008); Zavala and Anitescu
(2010). The decreasing property of V ect+1(σ) with σ can be
guaranteed locally if a solution exists at a fixed value of
σ because λt+1(σ) ≥ 0 by construction. Moreover, we can
find a suitable σ ∈ [0, 1) where a solution of MPC-E exists
by solving the following optimization problem:

min
zk,uk,σ

T−1∑
k=0

Lec(zk, vk) (29a)

s.t. zk+1 = f(zk, vk), k = 0, ..., T − 1 (29b)

zk ∈ X , vk ∈ U , k = 0, ..., T − 1 (29c)

z0 = xt+1 (29d)

zT = xss (29e)
T−1∑
k=0

Ltr(zk, vk) ≤ V̄ trt+1 + σ(V trt − V̄ trt+1) (29f)

0 ≤ σ ≤ 1− δ. (29g)

Here δ ∈ (0, 1) is a small parameter. Problem (29) finds the

trajectory {xk|t+1, uk|t+1}t+1+T
t+1 and a feasible σ ∈ [0, 1)

that minimizes the economic objective. This problem is
feasible because it admits σ = 0 as a solution. We thus
have that, if σ is obtained by solving (29) at each time t,
then Theorem 1 follows. We note that, in problem (29), σ
acts as a slack variable that is increased to minimize the
economic objective. Consequently, if σ = 0 is the solution
of (29), we have an indication that MPC-E is infeasible
for any σ ∈ (0, 1).

Connection with Economic Lyapunov Framework:
Under convexity and a Slater condition we have that
strong duality holds and stability of MPC-E can also be
established using the Lyapunov framework for economic
MPC of Diehl et al. (2011). Consequently, the stabilizing
constraint (13f) of MPC-E is not needed. In the nonconvex
case, however, strong duality is no longer guaranteed to
hold. In this more general case we can guarantee stability
of MPC-E by solving (29) instead of (13) . This provides
an advantage over the Lyapunov framework of Diehl et al.
(2011).

5. CASE STUDY

We consider the nonlinear chemical reactor system,

cAt+1 = cAt + h

(
Qt
V

(cAf − cAt )− krcAt
2
)

(30a)

cBt+1 = cBt + h

(
Qt
V

(cBf − cBt ) + krc
A
t

2
)
, (30b)

where cAt , c
B
t are the states and Qt is the control. The

tracking and economic stage costs are given by

Ltr(cAt , c
B
t , Qt) =

1

2
|cAt − 1/2|2 +

1

2
|cBt − 1/2|2

+
1

2
|Qt − 12|2 (31a)

Lec(cAt , c
B
t , Qt) = −2Qtc

B
t +

1

2
Qt. (31b)

The system has an equilibrium point at cAss = cBss = 1/2
and Qss = 12. We consider a closed-loop study with a time
horizon T = 20, N = 100 time steps, initial conditions
cA0 = 0.4 and cB0 = 0.2, and we span the range σ ∈ [0, 1].
The system data is provided by Diehl et al. (2011) and
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Fig. 1. Accumulated economic and tracking value functions
for different values of σ.

an AMPL implementation of this study is available at
http://www.mcs.anl.gov/~vzavala/multiobjec.tgz.

In Figure 1 we present the trade-off curve of accumu-
lated economic and tracking value functions Ec(σ) :=∑N
t=0 V

ec
t (σ) and

∑N
t=0 V

tr
t (σ), respectively. We construct

this curve by spanning the σ interval [0, 1] in increments
of 0.01. As can be seen, the value functions are conflicting
and the economic value function quickly decays with σ as
it approaches the stability boundary of σ = 1 (see points
at σ = 0.98, 0.99). In other words, a slight relaxation of
the stabilizing constraint can reach high gains in economic
performance. Moreover, these gains can be achieved with-
out compromising stability. The relative gap in economic
performance 100 · (Ec(0)− Ec(1))/Ec(0) is of 14%.

The smoothness of the trade-off curve of Figure 1 indicates
that MPC-E is defined for different values of σ. We
highlight, however, that this curve is not technically a
Pareto front because the Pareto front of MPC-MO is
defined at each time for the current state xt. Constructing
the Pareto fronts at each point in time is computationally
intensive; consequently, we do not present them here.

In Figure 2 we present the tracking value functions V trt (σ).
The tracking function is strictly decreasing for all σ ∈
[0, 1) and eventually decays to zero and thus stability is
achieved. For σ = 1 stability is not achieved, as predicted
by Theorem 1. The speed of decay increases with decreas-
ing σ. Stability can also be visualized in Figure 3 where we
present the time profile for the reactant concentration cAt .
The profile for σ = 1 does not converge to the equilibrium
point (i.e., it is periodic) while for σ = 0.99 and σ = 0.98
the profiles exhibit periodicity at the beginning of the
horizon and eventually decay to the equilibrium point xss
(this is most notable for σ = 0.98). We highlight that we
only show 100 time steps to illustrate the behavior of the
dynamic profiles. The instability for σ = 1 reinforces the
observation of Diehl et al. (2011) who note that strong du-
ality does not hold for the reactor system and thus stability
cannot be guaranteed. To overcome this limitation, Diehl
et al. (2011) add the quadratic regularization term (31a)
to the economic objective (31b). This is equivalent to solve
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Fig. 2. Tracking function V trt (σ) for different values of σ.
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Fig. 3. Concentration profile cAt for σ = 1, 0.99, 0.98.
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Fig. 4. Stability price λt(σ) for different values of σ.

the weighted MPC-E problem (24) with fixed weight. The
stabilizing constraint of MPC-E provides a similar regu-
larization effect but the weight is automatically adjusted
at each time (see Proposition 3).



In Figure 4 we present time profiles for the stability prices
λt(σ). The prices increase as we decrease σ and this indi-
cates that decreasing σ restricts economic performance.
For σ = 1 we have that the price is zero, indicating
that the stabilizing constraint does not restrict economic
performance (i.e., no further gains can be achieved by
relaxing the stabilizing constraint further). For each σ, the
prices increase in time and eventually settle down because
the system settles at xss. The settling value of the price is
positive, implying that the system always has an economic
incentive to leave the equilibrium point xss to enhance
economic performance. We currently do not understand,
however, why the settling level is different for different
values of σ. This is counterintuitive because the system
settles at the same equilibrium point in all cases.

6. CONCLUSIONS

We have presented an interpretation of economic MPC as
that of a controller that trades off economic performance
and stability. Using this notion, we derive an economic
MPC controller that makes use of a flexible stabilizing con-
straint, and we use multiobjective optimization concepts
to introduce the notion of price of stability. We demon-
strate that nontrivial gains in economic performance can
be obtained without compromising stability. As part of
future work it is necessary to understand the dynamic
behavior of the stability price and design controllers that
balance the conflicting objectives of economics, stability,
and robustness. Real-time implementations of the con-
troller following the ideas in Biegler et al. (2015) and Diehl
et al. (2002) are also desirable.
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